jueves, 30 de noviembre de 2017

American Airlines' Computer Glitch Leaves It Without Pilots Over Christmas

Traveling during the holidays is, by definition, no fun. If you caught a flight over Thanksgiving this year, you got lucky—everything ran more or less to plan. No freak winter storms, no striking baggage handlers, no collapsing computer systems. Expecting the Christmas travel rush to go just as …

http://flip.it/qxAqPB




Cable-laying drone wires up remote Welsh village

A drone has helped bring superfast broadband services to an isolated Welsh village. Cable company Openreach used the drone to avoid having to lay cable across "challenging" terrain that included woods, a river and steep hills. The drone was flown across a section of forest near Pontfadog, Wrexham...

http://flip.it/b5aXM2





Drones to deliver rural broadband... huh?

Will the government fulfil its manifesto promise that every home and business in the country will have high-speed broadband by 2020? The company that it will have to rely on to make that happen - Openreach - is warning it could risk missing the target unless the government decides soon how it wil...

http://flip.it/hBTeBf






Would You Go to School to Learn How to Mine in Space?

Hunter Williams used to be an English teacher. Then, three years into that job, he started reading the book The Moon Is a Harsh Mistress. The 1966 novel by Robert Heinlein takes place in the 2070s, on the moon, which, in this future, hosts a subterranean penal colony. Like all good sci-fi, the pl...

http://flip.it/C.PBLu






Boeing Emphasizes Affordability, Modularity in New ICBM Design



----
Boeing Emphasizes Affordability, Modularity in New ICBM Design // MediaRoom
http://boeing.mediaroom.com/2017-11-30-Boeing-Emphasizes-Affordability-Modularity-in-New-ICBM-Design

Review with U.S. Air Force confirms baseline requirements for ground-based nuclear deterrent
----

Read in my feedly.com

Over-long A340 take-off rolls spur slow-rotation warning



----
Over-long A340 take-off rolls spur slow-rotation warning // Airlines news
http://www.flightglobal.com/news/articles/over-long-a340-take-off-rolls-spur-slow-rotation-war-443732/

Crews are being cautioned over the risk posed by slow rotation rates after serious take-off incidents involving long-haul aircraft operating at limiting conditions.
----

Read in my feedly.com

Crossing drones with satellites: ESA eyes high-altitude aerial platforms / Navigation / Our Activities / ESA








High Altitude Pseudo-Satellites, or HAPS, are platforms that float or fly at high altitude like conventional aircraft but operate more like satellites – except that rather than working from space they can remain in position inside the atmosphere for weeks or even months, offering continuous coverage of the territory below.

The best working altitude is about 20 km, above the clouds and jet streams, and 10 km above commercial airliners, where wind speeds are low enough for them to hold position for long periods.continue reading http://www.esa.int/Our_Activities/Navigation/Crossing_drones_with_satellites_ESA_eyes_high-altitude_aerial_platforms/(print)

Mercedes Marks 100 Successful Drone Deliveries In Zurich

UK government pledges £54 million for aerospace research projects

Engine Testing Underway For Stratolaunch








But First Flight For The Enormous Airplane Not Likely Until 2018

http://www.aero-news.net/bannertransfer.cfm?do=main.textpost&id=ca5b7d49-df70-4fb1-895a-6527ad1b3893

Rocket Lab announces window for next Electron launch



PR





Rocket Lab will open a ten-day launch window from Friday December 8, 2017 NZDT to carry out the company’s second test launch of the Electron rocket. During this time a four-hour launch window will open daily from 2:30 p.m NZDT.

The test launch, titled ‘Still Testing’, will take place from Rocket Lab’s Launch Complex 1 on the Māhia Peninsula, New Zealand. It follows on from the successful inaugural Electron test carried out on May 25, 2017.

Still Testing will be the first Rocket Lab launch to be live streamed to the public. A live video stream will be available approximately 12 minutes prior to a launch attempt at www.rocketlabusa.com

The test launch attempt will only proceed if conditions are ideal for launch. Due to the nature of launching rockets, planned lift-offs are often subject to multiple and subsequent postponements, or scrubs, to allow for small, technical modifications and to wait for ideal weather conditions.

Peter Beck, Founder and CEO of Rocket Lab, says the test is an important next step in making space accessible and the team will be focusing on gathering more data to inform future launches.

“Electron’s first test made history when it became the first orbital-class launch vehicle to reach space from a private launch facility. We analysed more than 25,000 channels of data from flight one, and we’re eager to learn more from this test flight. This is the first test carrying customer payloads and we’ll be monitoring everything closely as we attempt to reach orbit,” he says.

“Once again, we’re expecting to scrub multiple times as we wait for perfect conditions and make sure everything on the vehicle is performing as it should.”

Still Testing will carry an Earth-imaging Dove satellite for Planet and two Lemur-2 satellites for Spire for weather and ship tracking, enabling Rocket Lab to gather crucial data and test systems for the deployment stage of a mission.

Still Testing is the second of three test launches planned from Launch Complex 1 ahead of commercial operations, however if the vehicle performs nominally throughout the second test the commercial phase may be accelerated.

For real-time updates throughout the launch window, follow Rocket Lab on Twitter @RocketLab

SpaceX will fly cargo to the space station on a used Falcon 9 rocket, NASA confirms


The company will use a rocket that already flew in June
https://www.theverge.com/2017/11/29/16715910/spacex-falcon-9-rocket-nasa-international-space-station-reusability

miércoles, 29 de noviembre de 2017

Humans still rule drone racing, but NASA's AI pilot might change that

How an AI-guided drone works, and why it lost. In a California warehouse in October, quadrocopter drones zoomed and buzzed, racing through an obstacle course of black-and-white checkered arches. On one team: drones guided by software and AI, the work of a team from NASA's Jet Propulsion Laborator...

http://flip.it/LtSnbp





We are basically positive that the Russians did not find alien bacteria in space

The simplest explanation is also the likeliest. It will be a glorious day when we finally get definitive proof of alien life. It's going to be absolutely amazing, whether we make contact with a species that rivals or exceeds us in intelligence or we accidentally squish an alien bug on a spaceship...

http://flip.it/84bRbE




American Fighter Jets Are Getting the Laser Cannons They've Always Deserved

It's been just a few months since Lockheed Martin gave the US Army the most powerful laser weapon ever developed, a ground vehicle–mounted system that can burn through tanks and knock mortars out of the sky. Now the US Air Force wants its own toy, so Lockheed's engineers are back in the lab, …

http://flip.it/QcFq1x





Could the Interstellar Asteroid 'Oumuamua Create Artificial Gravity?

For the first time, humans have detected an interstellar asteroid—a space rock they're calling 'Oumuamua, which is a Hawaiian word meaning "scout." It's the only object we've ever seen that entered the solar system from beyond our little collection of planets. That's a pretty big deal on its own. …

http://flip.it/82bRSy



Soft Robots Acquire Origami Skeletons for Super-Strength

I can't sit here and promise you that the robot apocalypse isn't coming, that the machines won't eventually rise up and overthrow their makers. But what I can promise you is that not all of them will be able to punch you out. Because robots are going soft. Like, literally soft, controlled with …

http://flip.it/fNIpLi





El aeropuerto de Teruel aprobado para VFR(N)



PR





El Aeropuerto de Teruel ha obtenido la autorización de uso flexible, tanto en público como en restringido. Con ello, amplia su horario operativo debido al fuerte crecimineto de operaciones aéreas y posibilita operar a diferentes clientes: grandes aeronaves en vuelos ferrys, mantenimiento de aeronaves, servicio medicalizado y forestal, trabajos aéreos, aviación general, escuela de vuelo y vuelos turisticos, entre otras actividades de I+D, ensayos, prototipos y formación aeronáutica.

De igual forma, se ha obtenido la autorización de AESA para vuelos VFR nocturno en uso restringido bajo demanda en el aerouerto. De esta forma, se permite operar por la noche con balizamiento y ofrecer horas de vuelo de entrenamiento para la formación de pilotos comerciales de las escuelas de vuelo. Es necessario solicitar permiso al Aeropuerto antes de los vuelos nocturnos con 24 horas de antelación.

Con una inversión de unos 40.000 € se ha mejorado la instalación con un faro de aeródromo, balizas de obstáculos en torres eléctricas próximas al aeropuerrto y el sistema de balizamiento del umbral desplazado en la cabecera sur de la pista de vuelo.

Continuando con las inversiones pevistas se ha licitado la adecuación de pista instrumental con un presupuesto de licitación de 357.925 €, IVA excluido. Se han presentado 6 empresas y está en fase de adjudicación, con un plazo de ejecución de 4 meses desde la firma del contrato.

Una vez validado el estudio de viabilidad de las aproximaciones instrumentales con satélite realizado conjuntamente con la empresa GMV en un proyecto subvencionado por la GSA, la Agencia del GNSS Europea. Se siguen realizando reuniones con EnAire y AESA para la definición de los procedimientos APV, tanto barométricos y con satélites de aproximación en ambas cabeceras de la pista de vuelo.

First Russian Il-78M-90A tanker aircraft was rolled out

B-21 Raider Headed Toward Critical Design Review, RCO Says



“It’s not easy to go and build a next-generation stealth bomber, but all of the indicators suggest we’re successfully executing the program,” Walden says. “We’re focused on getting to the critical design review, and getting those drawings in place and starting to build this bomber.”

Continue reading http://aviationweek.com/defense/b-21-raider-headed-toward-critical-design-review-rco-says?NL=AW-05&Issue=AW-05_20171129_AW-05_868&sfvc4enews=42&cl=article_2&utm_rid=CPEN1000002242919&utm_campaign=12785&utm_medium=email&elq2=6c3a250d81ce4c38a81d02ac9c137716

Tecnam U.S. delivers the first three of thirty Special Mission Platforms for geospatial data acquisition.



Press Release




Tecnam U.S. announced today that on October 2nd, 2017 and November 20th, 2017 it completed the delivery of the first three (3) of an order for thirty (30) P2006T twin engine aircraft in its Special Mission Platform (SMP) configuration. The three aircraft now delivered are part of a 24-months contract to deliver 30 SMP aircraft to a geospatial data acquisition company modernizing its fleet to optimize operational costs and sensor availability. The company has options for an additional 24 P2006T SMP aircraft following the delivery of the first 30 aircraft commitment.

For this 30 aircraft contract the Tecnam SMP will be delivered with its standard, field proven, mission power system and dedicated hatch to accommodate multiple sensor packages, managed by Tecnam as Type Certification design changes.

The contract also provides for additional design services from Tecnam to optimize the installation for specific sensor packages under Tecnam’s design authority and experience.

“Given the age of existing sensor platforms, costs to operate them and changes in the requirements of the sensors themselves, the P2006T is the right platform at the right time for bringing geospatial data sensing up to date. We are proud that our Customer has chosen Tecnam to provide aircraft for their fleet expansion and look forward to the opportunity to evolve the data sensing platform paradigm”, said Paolo Pascale, CEO of Tecnam.

Newly restored Messerschmitt Bf109G flies again: Test pilot shares his experience

New twin engined Cessna SkyCourier unveiled; FedEx Express as launch customer


Press Release
  • Textron Aviation unveils new large-utility turboprop, the Cessna SkyCourier
  • FedEx Express signs as launch customer for up to 100 aircraft 





 Textron Aviation and FedEx leadership at signing ceremony (from left to right: David L. Cunningham, president and CEO, FedEx Express; David J.  Bronczek, president and COO, FedEx Corp.; Scott Donnelly, chairman, president and CEO, Textron Inc.; Scott Ernest, president and CEO, Textron Aviation)


WICHITA, Kan. (Nov. 28, 2017) – Textron Aviation Inc., a Textron Inc. (NYSE:TXT) company, today announced its new twin-engine, high-wing, large-utility turboprop – the Cessna SkyCourier 408. FedEx Express, the world’s largest express transportation company and longtime Textron Aviation customer, has signed on as the launch customer for up to 100 aircraft, with an initial fleet order of 50 cargo aircraft and options for 50 more. Entry into service for the clean-sheet design Cessna SkyCourier is planned for 2020.

“With our depth of expertise and proven success in new product development, we were eager to work directly with a world-class company like FedEx Express to jointly develop the Cessna SkyCourier,” said Scott Ernest, president and CEO of Textron Aviation. “The aircraft will fulfill a gap in this market segment with its superior performance and low operating costs in combination with the cabin flexibility, payload capability and efficiency only a clean-sheet design can offer.”

About the Cessna SkyCourier
Built for high utilization operations, the Cessna SkyCourier 408 will be offered in cargo and passenger variants. The cargo variant will feature a large cargo door and a flat floor cabin that is sized to handle up to three LD3 shipping containers with an impressive 6,000 pounds of maximum payload capability. The aircraft will also afford a maximum cruise speed of up to 200 ktas and a 900 nautical-mile maximum range.

The efficient 19-passenger variant will include crew and passenger doors for smooth boarding, as well as large cabin windows for great natural light and views. Both configurations will offer single-point pressure refueling to enable faster turnarounds.

The Cessna Caravan platform has set the standard in the single-engine utility category for decades. The Cessna SkyCourier will build on that proven success in the large-utility category, offering even greater capability and mission flexibility.

FedEx Express order
Textron Aviation has built a strong relationship with FedEx Express, which has utilized the Cessna Caravan platform in its feeder aircraft fleet for over 30 years.

“FedEx Express has had a great relationship with Textron Aviation over the years, and this new, advanced aircraft will play a key role in our feeder aircraft modernization strategy,” said David L. Cunningham, president and CEO of FedEx Express. “The Cessna SkyCourier 408 offers a number of significant features that will enhance our long-term feeder strategy.”

Indian aerospace behemoth reveals why Indo-Russia 5th gen. fighter is highly feasible



Any new fighter jet procurement deal by Indian Air Force would require the foreign vendor to set up a production line in India - a time taking process. In this backdrop, HAL's claim that it can immediately start co-producing the FGFA with Russia from existing facility holds immense significance.
Continue reading http://www.spacedaily.com/reports/Indian_aerospace_behemoth_reveals_why_Indo_Russia_FGFA_is_highly_feasible_999.html

[videos] UAS More Dangerous Than Birds, FAA Collision Study Says

Click on images to enlarge







In FAA Press Release:
https://www.faa.gov/news/updates/?newsId=89246






In Assure Press Release


Last month, a report from Canada indicated the possible collision of a drone with a jet approaching Quebec City’s International Airport. The incident reintroduced public concerns about air collisions between small unmanned aircraft systems (sUAS) and commercial aircraft and what it may mean to the safety of air travel.

Although the Federal Aviation Administration (FAA) is not yet able to definitively address these concerns, studies by a consortium of leading universities, through the Alliance for System Safety of UAS through Research Excellence (ASSURE), have begun to bring better understanding to the physical damage associated with small unmanned aircraft – or drones – colliding midair with commercial and business aircraft.

The ASSURE research team began its research in FY 2016, using unique resources from Mississippi State University, Montana State University, Ohio State University, and Wichita State University. This research team set out to answer the question of what happens when – not if – there is a collision between a sUAS and an airplane.

“While the effects of bird impacts on airplanes are well documented, little is known about the effects of more rigid and higher mass sUAS on aircraft structures and propulsion systems,” said Mississippi State University’s Marty Rogers, the Director of ASSURE. “The results of this work are critical to the safety of commercial air travel here in the United States and around the world.”

Today at 12:15 p.m. EST, at the FAA Federal Headquarters in Washington, D.C., the FAA, along with ASSURE members, announced their findings in The sUAS Air-to-Air Collision Severity Evaluation Final Report.

Researchers’ efforts began by first determining the most likely impact scenarios. This was done by reviewing operating environments for both sUAS and manned aircraft. The team then selected the commercial and business aircraft and sUAS based on these impact scenarios and their likely exposure to one another.

The commercial narrow-body air transport selected was characteristic of a Boeing B737 and an Airbus A320 aircraft, which represent 70% of the commercial aircraft fleet. The business jet model represented a Learjet 30/40/50. Similarly, the team selected a small quadcopter and a light fixed-winged unmanned aircraft as representative of the most-likely threats to manned aircraft.

Researchers determined the areas of manned aircraft most likely to be impacted as being the leading edges of wings, vertical and horizontal stabilizers, and windscreens.


ASSURE researchers also performed engine impact simulations on the fan section of an existing business-jet-sized, turbofan-engine model that the FAA previously used for fan blade-out testing. The FAA/ASSURE team conducted this research to better inform the scope of the next phase of research, as well as the critical variables essential to their continued research and engine ingest testing.

“Computer simulations, supported by material and component level testing, were conducted to determine the effects of sUAS impacts on manned aircraft,” said Gerardo Olivares, Ph.D., Director, Crash Dynamics and Computational Mechanics Laboratories at Wichita State University. “Conducting this study through full-scale physical tests would not have been possible from a cost and time perspective due to the immense complexity of the task. On the other hand, simulation enabled us to study over 180 impact scenarios in a twelve-month period. To ensure results accurately predict the actual physical behavior of collisions, we have spent a lot of time developing, verifying, and validating detailed models of manned and unmanned aircraft. Once the models are validated, we can use them in the future to investigate other impact scenarios.”

Researchers observed various levels of airframe and engine damage in all sUAS collision simulations. They confirmed that energy (projectile mass and velocity) and the stiffness of the sUAS are the primary drivers of impact damage. This research showed that the severity of the collision is also dependent on the design features of the sUAS and the dynamics of the impact.

Commercial aircraft manufacturers design aircraft structural components to withstand bird strikes from birds up to eight pounds for the empennage and four pounds for windscreen. ASSURE simulations show sUAS collisions inflict more physical damage than that of an equivalent size and speed bird-strike. sUAS components are much stiffer than birds, which are mostly composed of water. Therefore, bird-strike certification regulations are not appropriate for unmanned aircraft. Additionally, regulators do not require and manufacturers do not design commercial and business aircraft to withstand collisions from other aircraft.

The ASSURE research team also conducted both physical testing and simulation on sUAS lithium batteries. Typical high-speed impacts caused the complete destruction of the battery, therefore, in these cases, there was not an increased risk of fire due to a shorted battery. However, during some of the low-speed impacts, associated with landing and takeoff, the battery was not completely destroyed. In some of these simulations, the battery remained lodged in the airframe and there was potential for increased risk of battery fire.

The findings above show the importance of properly researching and regulating the use of sUAS in a crowed national airspace system. While design features can decrease the severity of a drone impact, sUAS pilots and the public must be aware of and abide by regulations for safe sUAS operations. It is critical that everything be done to keep these collisions from occurring through the safe separation of all aircraft, both manned and unmanned. The FAA will depend on the sUAS community to help develop the technology for proper detect-and-avoid so that these aircraft do not meet in flight.

This is the first in a series of research projects conducted to understand and quantify the potential severity of airborne collisions. Future studies will research the severity of collisions with general aviation (GA) aircraft, rotorcraft, and high-bypass turbofan engines representative of those found in airline fleets today. Because of the scope and magnitude of this research, and the impact it will have on industry and national airspace safety, the follow-on studies will be broken into multiple phases beginning this year and running through FY21.

The complete report is available at http://www.assureuas.org/projects/deliverables/sUASAirborneCollisionReport.php

​Tokyo to conclude X-2 programme in March 2018



The twin-engined fighter has completed 34 sorties, says Hirofumi Doi, manager of Japan's Future Fighter Program at ATLA. The first two flights were conducted by Mitsubishi, the subsequent 32 by ATLA at Gifu air base. The aircraft's maiden flight occurred on 22 April 2016. Continue reading https://www.flightglobal.com/news/articles/tokyo-to-conclude-x-2-programme-in-march-2018-443717/

Debut of SpaceX’s Falcon Heavy rocket now planned early next year

https://spaceflightnow.com/2017/11/28/debut-of-spacexs-falcon-heavy-rocket-now-planned-in-january/

NASA Begins Checkout of Dellingr Spacecraft Designed to Improve Robustness of CubeSat Platforms



NASA ground controllers have begun checking out and commissioning a shoebox-sized spacecraft that the agency purposely built to show that CubeSat platforms could be cost-effective, reliable, and capable of gathering highly robust science.

The Dellingr spacecraft will begin science operations once ground controllers complete checkout, which began a few hours after the NanoRacks CubeSat Deployer aboard the International Space Station released the CubeSat into its low-Earth orbit Nov. 20. Continue reading https://www.nasa.gov/feature/goddard/2017/nasa-begins-checkout-of-dellingr-spacecraft-designed-to-improve-robustness-of-cubesat

New 3-D printer is 10 times faster than commercial counterparts

 New 3-D printer is 10 times faster than commercial counterparts

MIT engineers have developed a new desktop 3-D printer that performs up to 10 times faster than existing commercial counterparts. Whereas the most common printers may fabricate a few Lego-sized bricks in one hour, the new design can print similarly sized objects in just a few minutes.Continue reading https://www.eurekalert.org/pub_releases/2017-11/miot-n3p112817.php





Fast Desktop-Scale Extrusion Additive Manufacturing

Abstract

Significant improvements to the throughput of additive manufacturing (AM) processes are essential to their cost-effectiveness and competitiveness with traditional processing routes. Moreover, high-throughput AM processes, in combination with the geometric versatility of AM, will enable entirely new workflows for product design and customization. We present the design and validation of a desktop-scale extrusion AM system that achieves a much greater build rate than benchmarked commercial systems. This system, which we call ‘FastFFF’, is motivated by our recent analysis of the rate-limiting mechanisms to conventional fused filament fabrication (FFF) technology. The FastFFF system mutually overcomes these limits, using a nut-feed extruder, laser-heated polymer liquefier, and servo-driven parallel gantry system to achieve high extrusion force, rapid filament heating, and fast gantry motion, respectively. The extrusion and heating mechanisms are contained in a compact printhead that receives a threaded filament and augments conduction heat transfer with a fiber-coupled diode laser. The prototype system achieves a volumetric build rate of 127 cm3/hr, which is approximately 7-fold greater than commercial desktop FFF systems, at comparable resolution; the maximum extrusion rate of the printhead is ∼14-fold greater (282 cm3/hr) than our benchmarks. The performance limits of the printhead and motion systems are characterized, and the tradeoffs between build rate and resolution are assessed and discussed. High-speed desktop AM raises the possibility of new use cases and business models for AM, where handheld parts are built in minutes rather than hours. Adaptation of this technology to print high-temperature thermoplastics and composite materials, which require high extrusion forces, is also of interest. Full Article http://www.sciencedirect.com/science/article/pii/S2214860416303220

martes, 28 de noviembre de 2017

Brexit 'not helping' UK aerospace sector: trade body



----
Brexit 'not helping' UK aerospace sector: trade body // Latest news
http://www.flightglobal.com/news/articles/brexit-not-helping-uk-aerospace-sector-trade-body-443584/

"The Brexit process is not one that is helping our reputation as sort of solid, global citizens," claims Paul Everitt, chief executive of the UK aerospace and defence trade association ADS.
----

Read in my feedly.com

​Qantas to order A350 or 777X in 2019 after ultra-long-range evaluation



----
​Qantas to order A350 or 777X in 2019 after ultra-long-range evaluation // Aircraft news
http://www.flightglobal.com/news/articles/qantas-to-order-a350-or-777x-in-2019-after-ultra-lo-443664/

Qantas expects to choose in 2019 between the Airbus A350 and Boeing 777X for the aircraft to meet its requirement to introduce nonstop flights between eastern Australia and London by 2022.
----

Read in my feedly.com

Startup Ampaire Takes Retrofit Path To All-Electric Regional



----
Startup Ampaire Takes Retrofit Path To All-Electric Regional // AviationWeek.com Commercial Aviation Channel
http://aviationweek.com/technology/startup-ampaire-takes-retrofit-path-all-electric-regional

California's Ampaire is starting out practical for certification efforts

U.S. startup's plans to certify a nine-seat battery-powered regional aircraft by 2020 are based on modifying an already certified turboprop.

read more


----

Read in my feedly.com

Suborbital Startup XCOR Plans To Liquidate



----
Suborbital Startup XCOR Plans To Liquidate // AviationWeek.com Commercial Aviation Channel
http://aviationweek.com/commercializing-space/suborbital-startup-xcor-plans-liquidate

XCOR Aerospace, which eyed a foothold in the suborbital market with its Lynx spaceplane, filed for Chapter 7 bankruptcy Nov. 8.

read more


----

Read in my feedly.com

TsAGI wins competition of R&D projects promoting the development of the Arctic and continental shelf

India Successfully Test Fires “Fastest Cruise Missile” From Aircraft

ENAIRE presenta Insignia, su nueva aplicación web de información aeronáutica

Insignia desarrollada por ENAIRE ofrece información aeronáutica a través de mapas interactivos de forma gratuita y en abierto en http://insignia.enaire.es 


Insignia es un visor de información aeronáutica que presenta el contenido de la base de datos del Servicio de Información Aeronáutica (AIS) de ENAIRE de una forma gráfica e interactiva.


La información disponible en Insignia incluye espacios aéreos, rutas, puntos de ruta, radioayudas, obstáculos, procedimientos instrumentales y visuales, coberturas radar, sectores de control y datos de aeródromo en todo el territorio del estado español y en el espacio aéreo sobre alta mar bajo la jurisdicción del mismo.


Para facilitar la visualización de la información, el usuario puede elegir entre uno o varios mapas aeronáuticos preconfigurados para mostrar las entidades más adecuadas y entre distintos mapas base.


Insignia también permite el uso de herramientas para controlar el zoom, filtrar, pedir información, buscar, medir, editar elementos gráficos propios o imprimir."





Airbus, Rolls-Royce y Siemens se unen para el futuro eléctrico




La alianza lanza el demostrador de vuelo híbrido eléctrico E-Fan X


Airbus, Rolls-Royce y Siemens han formado una alianza para desarrollar, a corto plazo, un demostrador de vuelo que será un paso adelante importante en la propulsión híbrida eléctrica para los aviones comerciales.

Las tres compañías juntas anunciaron esta colaboración sin precedentes, que reúne los mejores expertos mundiales en tecnologías eléctricas y de propulsión en la Royal Aeronautical Society de Londres.

Se prevé que el demostrador de tecnología híbrida-eléctrica E-Fan X volará en 2020 tras una campaña de amplias pruebas en tierra, provisionalmente en una plataforma de pruebas volante BAe 146, con uno de los cuatro motores de turbina de gas de la aeronave sustituido por un motor eléctrico de dos megavatios. Se establecerán disposiciones para sustituir una segunda turbina de gas por un motor eléctrico una vez probada la madurez del sistema.

“El E-Fan X es un paso importante hacia nuestro objetivo de hacer realidad el vuelo eléctrico en un futuro próximo. Las lecciones que aprendimos de una larga historia de demostradores de vuelo eléctricos, empezando por el Cri-Cri, incluso el e-Genius, E-Star y culminando recientemente con el E-Fan 1.2, así como el fruto de la colaboración E-Aircraft Systems House con Siemens, abrirán el camino hacia un avión comercial de pasillo único híbrido que es seguro, eficiente y rentable”, declaró Paul Eremenko. “Consideramos la propulsión híbrida eléctrica como una tecnología convincente para el futuro de la aviación.”

El demostrador E-Fan X explorará los desafíos de los sistemas de propulsión de alto rendimiento, como efectos térmicos, gestión del empuje eléctrico, efectos dinámicos y de la altitud sobre los sistemas eléctricos y problemas de compatibilidad electromagnética. El objetivo es empujar y dejar madurar la tecnología, el rendimiento, la seguridad y fiabilidad para progresar rápidamente sobre la tecnología híbrida eléctrica. La finalidad del programa también es establecer los requisitos para una futura certificación del avión eléctrico formando a una nueva generación de diseñadores e ingenieros para acercar el avión comercial híbrido eléctrico un poco más a la realidad.

Como parte del programa E-Fan X, Airbus, Rolls-Royce y Siemens contribuirán cada uno con su amplia experiencia y sus conocimientos en su respectivo ámbito de competencia:
  • Airbus se encargará de la integración global así como de la arquitectura de control del sistema de propulsión híbrido eléctrico y las baterías, y su integración con los mandos de control de vuelo.
  • Rolls-Royce se encargará del motor turbo-shaft, del generador de dos megavatios y de la electrónica de potencia. Junto con Airbus, Rolls-Royce también trabajará en la adaptación del ventilador a la góndola existente y al motor eléctrico de Siemens.
  • Siemens entregará los motores eléctricos de dos megavatios y su unidad de control de la electrónica de potencia, así como el inversor, convertidor DC/DC y sistema de distribución de la alimentación eléctrica. Todo ello viene a añadirse a la colaboración E-Aircraft Systems House entre Airbus y Siemens, lanzada en 2016 y cuyo objetivo es desarrollar y dejar madurar varios componentes de sistemas de propulsión eléctrica y su demostración terrestre con diferentes gamas de potencia.


Paul Stein, Chief Technology Officer para Rolls-Royce, declaró: “El E-Fan X nos permite aprovechar nuestros amplios conocimientos eléctricos para revolucionar el vuelo y entrar en la tercera generación de la aviación. Son unos momentos muy emocionantes para nosotros puesto que estos avances tecnológicos harán que Rolls-Royce cree el generador de vuelo más potente del mundo.”

“Siemens ha impulsado la innovación en ámbitos tecnológicos esenciales a toda velocidad”, dijo Roland Busch, Chief Technology Officer para Siemens. “En abril de 2016, abrimos un nuevo capítulo en la movilidad eléctrica con la colaboración de Airbus. Desarrollando la propulsión eléctrica de los aviones, estamos creando nuevas perspectivas para nuestra empresa y también para nuestros clientes y nuestra sociedad. Con la colaboración E-Fan X, damos ahora el siguiente paso para demostrar la tecnología en el aire.”

Uno de los desafíos del sector de aviación actual será avanzar hacia un medio de transporte con mejores prestaciones medioambientales, más eficiente y que dependa menos de los combustibles fósiles. Los socios se han comprometido a alcanzar los objetivos medioambientales técnicos europeos del informe de la Comisión Europea "Flightpath 2050 - Vision for Aviation" (reducir las emisiones de CO2 en un 60%, reducir los NOx en un 90% y reducir el ruido en un 75%). Estos objetivos no pueden alcanzarse con las tecnologías que existen en la actualidad. Por consiguiente, Airbus, Rolls-Royce y Siemens están invirtiendo y orientando los trabajos de investigación hacia diversas áreas tecnológicas, incluso la electrificación. La propulsión eléctrica y la propulsión híbrida eléctrica hoy se consideran entre las tecnologías más prometedoras para afrontar estos retos.

Flying into a Hybrid-Electric Future


Siemens and Airbus are convinced that aviation systems will change fundamentally over the next few years. And they intend to play a major role shaping the future of the industry. In April 2016 they agreed to a game-changing collaborative effort. By 2020 they want to prove the viability of hybrid-electric propulsion systems. Martin Nüsseler, project manager from Airbus, and his counterpart at Siemens, Joachim Zoll, discuss their goals and how they plan to work together.

Continue reading https://www.siemens.com/innovation/en/home/pictures-of-the-future/mobility-and-motors/electromobility-interview-nuesseler-zoll.html

Airbus, Rolls-Royce, and Siemens team up for electric future




PR

Airbus, Rolls-Royce, and Siemens have formed a partnership which aims at developing a near-term flight demonstrator which will be a significant step forward in hybrid-electric propulsion for commercial aircraft.

The three companies together announced the groundbreaking collaboration, bringing together some of the world’s foremost experts in electrical and propulsion technologies, at the Royal Aeronautical Society in London.

The E-Fan X hybrid-electric technology demonstrator is anticipated to fly in 2020 following a comprehensive ground test campaign, provisionally on a BAe 146 flying testbed, with one of the aircraft’s four gas turbine engines replaced by a two megawatt electric motor.  Provisions will be made to replace a second gas turbine with an electric motor once system maturity has been proven.

“The E-Fan X is an important next step in our goal of making electric flight a reality in the foreseeable future. The lessons we learned from a long history of electric flight demonstrators, starting with the Cri-Cri, including the e-Genius, E-Star, and culminating most recently with the E-Fan 1.2, as well as the fruits of the E-Aircraft Systems House collaboration with Siemens, will pave the way to a hybrid single-aisle commercial aircraft that is safe, efficient, and cost-effective,” said Paul Eremenko. “We see hybrid-electric propulsion as a compelling technology for the future of aviation.”

The E-Fan X demonstrator will explore the challenges of high-power propulsion systems, such as thermal effects, electric thrust management, altitude and dynamic effects on electric systems and electromagnetic compatibility issues. The objective is to push and mature the technology, performance, safety and reliability enabling quick progress on the hybrid electric technology. The program also aims at establishing the requirements for future certification of electrically powered aircraft while training a new generation of designers and engineers to bring hybrid-electric commercial aircraft one step closer to reality.

As part of the E-Fan X program, Airbus, Rolls-Royce, and Siemens will each contribute with their extensive experience and know-how in their respective fields of expertise:
  • Airbus will be responsible for overall integration as well as the control architecture of the hybrid-electric propulsion system and batteries, and its integration with flight controls.
  • Rolls-Royce will be responsible for the turbo-shaft engine, two megawatt generator, and power electronics. Along with Airbus, Rolls-Royce will also work on the fan adaptation to the existing nacelle and the Siemens electric motor.
  • Siemens will deliver the two megawatt electric motors and their power electronic control unit, as well as the inverter, DC/DC converter, and power distribution system. This comes on top of the E-Aircraft Systems House collaboration between Airbus and Siemens, launched in 2016, which aims at development and maturation of various electric propulsion system components and their terrestrial demonstration across various power classes.

    Paul Stein, Rolls-Royce, Chief Technology Officer, said: “The E-Fan X enables us to build on our wealth of electrical expertise to revolutionize flight and welcome in the third generation of aviation. This is an exciting time for us as this technological advancement will result in Rolls-Royce creating the world’s most powerful flying generator.

    “Siemens has been driving innovation in core technology fields at full speed,” said Roland Busch, Chief Technology Officer of Siemens. “In April 2016 we opened a new chapter in electric-mobility with the collaboration with Airbus. Building up electric propulsion for aircraft, we are creating new perspectives for our company and also for our customers and society. With the E-Fan X partnership, we now take the next step to demonstrate the technology in the air.”

    Among the top challenges for today’s aviation sector is to move towards a means of transport with improved environmental performance that is more efficient and less reliant on fossil fuels. The partners are committed to meeting the EU technical environmental goals of the European Commission’s Flightpath 2050 Vision for Aviation (reduction of CO2 by 60%, reduction of NOx by 90% and noise reduction by 75%). These cannot be achieved with the technologies existing today. Therefore, Airbus, Rolls-Royce and Siemens are investing in and focusing research work in different technology areas including electrification. Electric and hybrid-electric propulsion are seen today as among the most promising technologies for addressing these challenges.

This press release and further information are available at www.siemens.com/press/electric-flight

Rolls-Royce Trent 1000 TEN enters service



PR

Rolls-Royce today celebrated the entry into service of its Trent 1000 TEN engine. The engine is designed to power all variants of the Dreamliner family, including the new 787-10. The engine incorporates new technologies to deliver increased thrust and improved efficiency for the aircraft.

Earlier this year the Trent 1000 engine celebrated a hat trick of firsts when it powered the first flight of the Boeing 787-10 Dreamliner, having powered the first flights of the 787-8 and the 787-9. More recently the Trent 1000 TEN powered an 18-hour test flight during which a Boeing 787-8 Dreamliner test flight drew a giant outline of the plane across the United States.

The Trent 1000 TEN is one of three Rolls-Royce engines to have achieved a first flight in the past 12 months.

Commenting on the milestone, Chris Young, Rolls-Royce, Director - Programmes, said: "We are very proud to see the Trent 1000 TEN enter into service on the 787 Dreamliner. The Trent 1000 TEN offers important improvements to our customers and we would like to congratulate those customers who will be operating it from today."

NASA to Test Advanced Space Wireless Network and Device for Returning Small Spacecraft to Earth

https://www.nasa.gov/ames/image-feature/nasa-to-test-advanced-space-wireless-sensor-network-and-device-for-returning-small-spacecraft-to-Earth


https://www.youtube.com/watch?v=aEcKFLIiTEA&feature=youtu.be

NASA: Drone Race: Human Versus Artificial Intelligence

https://www.nasa.gov/feature/jpl/drone-race-human-versus-artificial-intelligence

https://www.youtube.com/watch?v=SrqrGweKQAU&feature=youtu.be&list=PLTiv_XWHnOZoPT2VCxZJOF7Vg1VTNuGj4

Specialists of TsAGI have performed strength tests of MC-21 wing box



Press Release




In mid-November, Central Aerohydrodynamic Institute (TsAGI) named after professor N.E. Zhukovsky (an affiliate of Research and Development Centre “Institute named after N.E. Zhukovsky”) completed another stage of static tests of a composite load-bearing wing box of MC-21-300 aircraft. The lead designer of the aircraft is Irkut Corporation.



The goal of the tests was to confirm the safety of implementation of aircraft flight tests on the terms of wing strength under impacts of maximum flight loads, defined for design by Irkut Corporation.

As a result of conducted tests, a wing box has withstood the load exceeding one determined by the tests program, without destruction. This is the experimental proof of sufficient strength of wing box under maximum flight loads of MC-21 aircraft with parameters accepted for flight tests.

The PAZ satellite heads towards its launch base



Press Release

Spain’s first radar satellite will be shipped next month to Vandenberg/USA ready for launch on 30 January 2018

Madrid, 22/11/2017 – The high resolution radar, Earth observation PAZ satellite, intended primarily to address civilian surveillance needs and to cover many different applications including defence and security, will say its final goodbye to Spain. It will be shipped in December 2017 to its launch site in Vandenberg Air Force Base, California, USA.

Airbus and Hisdesat, the Spanish operator of governmental satellites announce that the launch of the PAZ satellite will take place in the last week of January. Since completion in 2015, Airbus has maintained the satellite in its Barajas cleanrooms, in Madrid, ready to be launched at short notice. “We had to be ready at all times as we could have got a green light at any moment,” said José Guillamón, head of Airbus Space Systems in Spain. Close cooperation between Airbus as the prime contractor and Hisdesat as the owner and operator of the satellite has been a key factor in successfully reaching the final stages.

The PAZ satellite is equipped with an advanced radar instrument designed for high flexibility, and the capability to operate in numerous modes allowing for the choice of several different image configurations. It will be able to generate images with up to 25 cm resolution, day and night and regardless of the meteorological conditions. Designed for a mission of five and a half years, PAZ will orbit Earth 15 times per day, covering an area of over 300,000 square kilometres from an altitude of 514 kilometres and a velocity of seven kilometres per second. On its slightly inclined quasi-polar orbit, PAZ will cover the entire globe in 24 hours, serving both government and commercial needs.

PAZ also features a sophisticated Automatic Identification System (AIS), simultaneously combining for the first time ship AIS signals and SAR (Synthetic Aperture Radar) imagery, increasing the monitoring capacities of the maritime domain worldwide. It will also be equipped with a Radio Occultation and Heavy Precipitation experiment (ROHP) from the Institute of Space Science del Consejo Superior de Investigaciones Científicas (ICE-CSIC). For the first time ever, GNSS (Global Navigation Satellite System) Radio Occultation measurements will be taken at two polarizations, to exploit the potential capabilities of polarimetric radio occultation for detecting and quantifying heavy precipitation events.

Airbus in Spain, as prime contractor of the programme, led a team of 18 European companies. The Spanish space industry was heavily involved in the development of the advanced active sensor with SAR technology. Since the start of the programme, the PAZ satellite has been generating significant benefits for the Spanish space companies involved, allowing them to develop new capabilities to further enhance their competitiveness in the global space market. “The PAZ programme is already a success story for Spain’s industrial development, said Miguel Ángel Panduro, Head of Hisdesat. “It has created hundreds of skilled jobs over the years, and stimulated research, development and innovation activities in Spain.”

Once in space, PAZ will share the same orbit as the TerraSAR-X and TanDEM-X radar satellites. They will be operated as a very high-resolution SAR satellite constellation. The addition of this third satellite will reduce revisit time and increase acquisition capacity, leading to subsequent benefits for various applications. All three satellites feature identical ground swaths and acquisition modes. The new setup will be jointly exploited by Hisdesat and Airbus.

The SAR constellation will expand Airbus’ already broad constellation services also comprising the optical satellites SPOT 6/7, Pléiades 1A & 1B and the Disaster Monitoring Constellation (DMC). PAZ, the first Spanish Earth observation satellite, will also be a contributor to Copernicus, the European Global Monitoring for Environment and Security programme.

Airbus Appoints Eric Schulz Successor to John Leahy

Press Release


  • Joins the company at the end of January 2018 from Rolls-Royce
  • Brings broad international experience in aerospace industry and deep understanding of airline operations
  • Airbus bids farewell to legendary aircraft salesman John Leahy; more than 16,000 aircraft sold under his leadership in nearly 33 years of service
  • Leahy to stay on for short transition period



Amsterdam, 28 November 2017 – Airbus (stock exchange symbol: AIR) has appointed Eric Schulz, 54, EVP, Chief of Sales, Marketing & Contracts for the company’s Commercial Aircraft business. In this function, he will join Airbus at the end of January 2018 and will report to Chief Executive Officer Tom Enders.

Schulz comes from Rolls-Royce where he has been serving as President – Civil Aerospace since January 2016. At Airbus, he will succeed John Leahy, 67, who has been at the helm of the Commercial Aircraft’s Sales organisation since 1994.

“We are glad to have Eric Schulz joining our team. He has broad international experience in the aerospace industry, a deep understanding of airline operations and aero engines as well as a proven track record in building and effectively leading organisations in complex environments. This combination of skills and experience makes Eric the right pick to succeed John Leahy at a critical juncture of our company’s development,” said Tom Enders.

Eric Schulz started his career in 1986 with Aerospatiale-Sogerma and has since held numerous senior management positions in companies like UTA, Air France, AOM, Air Liberté-British Airways, Goodrich, EADS and Rolls-Royce. He holds a Master’s Degree in Mechanical Engineering from the Geneva Engineering School and in Aeronautical Engineering from Paris’ ESTA Engineering and Technology School.

Affectionately known to airlines around the world as “Mr. Airbus”, John Leahy joined the company in 1985 from Piper Aircraft in the U.S. and will retire after 33 years of service.
With more than 16,000 aircraft sold under his leadership, which accounts for 90 percent of all Airbus aircraft ever sold, John Leahy is truly a living legend in the history of aviation.

“There are not enough words to express the gratitude I feel for John Leahy both on a professional and personal level. His contribution to Airbus’ commercial aircraft business is epic. His relentless efforts, his vision and his dedication were key factors in propelling the company from an industry underdog to a world leader. No matter how hard the challenge I have never seen John give up on anything,” said Enders. “His tremendous fighting spirit and his unwavering loyalty to the Airbus flag have made him an inspiration for many, including me. He has become a good personal friend and I wish him a restful and well-deserved retirement.”

John Leahy will remain with Airbus for a few months’ transition period with his successor.

Las exportaciones aeronáuticas andaluzas de enero a septiembre alcanzan la cifra récord de 2.334 millones y superan las de todo 2016

Nota de Prensa


  • Andalucía duplica su volumen de ventas respecto a los primeros nueve meses del año pasado, con un alza del 128%, y acapara 4 de cada 10 euros que vende España al mundo


Andalucía alcanza un nuevo récord de exportaciones del sector aeronáutico en los primeros nueve meses de 2017, superando en casi 1.000 millones las ventas totales del año 2016 (1.405 millones) en este periodo. La comunidad acapara 4 de cada 10 euros que vende España, al registrar 2.334 millones de euros y un alza del 128% respecto al mismo periodo del año anterior, un crecimiento que duplica al nacional (56%), en concreto, se coloca 72 puntos por encima.

Con este récord histórico para el periodo desde que existen las estadísticas de comercio exterior, Andalucía se sitúa como segunda comunidad exportadora de este sector, con el 42% de las ventas, sólo a dos décimas de Madrid, (2.465 millones y 44% del total), y por delante del País Vasco, que sólo supone el 4,6% del total (256 millones).

Además, la región andaluza ostenta un saldo positivo en la balanza comercial de 797 millones, mientras que las ventas a nivel nacional registraron en este periodo un déficit de 58 millones de euros.

Sevilla-Cádiz eje exportador

En cuanto a las provincias exportadoras, el eje Sevilla-Cádiz concentra casi el 100% de las ventas. Sevilla es líder, al alcanzar los 2.065 millones (89% del total) y una subida del 180%, más del doble respecto a los primeros nueve meses 2016; y Cádiz está en segundo puesto, con 264 millones (11,3% del total).

Les siguen con una menor cantidad en ventas Córdoba (3,7 millones) con un crecimiento del 4,4%; Málaga (1,7 millones de euros) con una subida del 56%; y Jaén (69.000 euros) con un incremento del 54%.

Los principales productos exportados están liderados aeronaves, con 1.827 millones (78% del total), que triplica su cifra con un alza del 218% con respecto a los primeros nueve meses de 2016. En segundo lugar, se encuentran equipamientos de navegación aérea, con 508 millones (21,8% del total) que crecen un 12,4% con respecto a enero-septiembre del año pasado.

Europa principal destino

En cuanto a los principales mercados de destino de las ventas aeronáuticas andaluzas, crecen nueve de los diez primeros, cinco de ellos por encima del cuádruple. En concreto, Alemania se aúpa como primer país en este periodo, con 833 millones (36% del total), que multiplica por 39 su cifra con un aumento del 3.819% respecto a los primeros nueve meses de 2016, el segundo mejor crecimiento entre los principales destinos.

Le sigue Reino Unido, con 487 millones (20,9% del total) con el mayor alza de este periodo entre los diez primeros destinos, del 7.832%, con lo que multiplica por 79 sus cifras; y en tercer lugar está Francia, con 439 millones (18,8% del total) que crece un 44%.

En cuarta posición se sitúa Turquía, primer mercado extracomunitario, con 248 millones (10,6% del total) y el segundo mayor incremento de enero a septiembre, con un alza del 5.486%, con lo que multiplica su dato por 55 respecto a las ventas del mismo periodo del año anterior; seguido de Malasia (131 millones) que crece un 6,8%; Estados Unidos (47 millones), que casi duplica sus ventas con un aumento del 95%; y Tailandia (43 millones) que sube un  54%.

En octavo lugar se encuentra Bangladesh (30 millones); seguido de Brasil (16,2 millones); y Arabia Saudí (7,8 millones), que multiplica su dato por cuatro con un alza del 375% en este periodo.

Apoyo de Extenda al sector

Con el objetivo de continuar impulsando la internacionalización de las empresas andaluzas del sector aeronáutico, Extenda ha programado para 2017 diferentes acciones estratégicas. Entre ellas, destaca la presencia agrupada en las principales ferias internacionales como Aerospace Meetings Lisboa, Paris Air Show- Le Bourget; Aerospace Meetings Casablanca y Airtec de Munich.

Además, se han celebrado una misión comercial directa a Estados Unidos y Canadá, en la que se establecieron contactos con Boeing y Bombardier. A esto hay que añadir visitas prospectivas a eventos destacados en el calendario del sector como Heliexpo, Xponential, GOCA Spring y GOCA Fall, NBAA o MRO Americas; y se organizó también una misión inversa en el General Atomic Industry Days en Málaga, en la que participaron 21 empresas andaluzas.

En 2018, Extenda organizará la cuarta edición de Aerospace & Defense Meetings-ADM Sevilla 2018, el mayor evento de negocios del sector que se celebra en España, que tendrá lugar entre el 15 y el 18 de mayo, con el objetivo de consolidar a Andalucía como capital del negocio aeroespacial en nuestro país y punto de referencia del circuito mundial del sector.

La tercera edición de ADM Sevilla, que se celebró en mayo de 2016, supuso la consolidación del carácter bienal del evento, que en sólo tres ediciones ha conseguido prácticamente duplicar la participación empresarial con la que nació en 2012, pasando de 288 a 500 empresas participantes en 2016, e incrementar un 60% el número de profesionales, hasta los 1.108, lo que redunda en un mayor conocimiento e internacionalización del cluster aeroespacial andaluz.