http://www.aero-news.net/index.cfm?do=main.textpost&id=5c5daec9-3ee1-4a6b-8bff-1f3d59afdb31
http://www.nasa.gov/centers/armstrong/news/FactSheets/FS-105.html
Researchers at NASA's Armstrong Flight Research Center, Edwards, California, successfully conducted the agency's first flight of the X-56A Multi-Utility Technology Testbed (MUTT) on April 9. The 20-minute flight marked the beginning of a research effort designed to yield significant advances in aeroservoelastic technology using a low-cost, modular, remotely piloted aerial vehicle. Aeroservoelasticity involves the interaction of an airplane's automatic flight controls with the response of non-rigid structures to aerodynamic forces. The X-56A is being flown in support of NASA's Advanced Air Transport Technology (AATT) project's Higher Aspect Ratio Wing subproject, Performance Adaptive Aeroelastic Wing element.
http://www.nasa.gov/centers/armstrong/news/FactSheets/FS-105.html
Researchers at NASA's Armstrong Flight Research Center, Edwards, California, successfully conducted the agency's first flight of the X-56A Multi-Utility Technology Testbed (MUTT) on April 9. The 20-minute flight marked the beginning of a research effort designed to yield significant advances in aeroservoelastic technology using a low-cost, modular, remotely piloted aerial vehicle. Aeroservoelasticity involves the interaction of an airplane's automatic flight controls with the response of non-rigid structures to aerodynamic forces. The X-56A is being flown in support of NASA's Advanced Air Transport Technology (AATT) project's Higher Aspect Ratio Wing subproject, Performance Adaptive Aeroelastic Wing element.
No hay comentarios:
Publicar un comentario